
Copyright  1995 Greg Reddick.   You may freely distribute this document. 

The Reddick VBA Naming 
Conventions 
 
Greg Reddick 
 

Copyright  1995 Greg Reddick. All Rights Reserved. 
Some of the naming tags, prefixes, and qualifiers in this document are 
derived from the Leszynski/Reddick naming conventions, Copyright  1994 
Stan Leszynski and Greg Reddick. 
 
The purpose of the Reddick VBA (RVBA) Naming Conventions is to provide a guideline for naming 
objects in the Microsoft Visual Basic for Applications (VBA) language. Having conventions is valuable in 
any programming project. When you use them, the name of the object conveys information about the 
meaning of the object. These conventions provide a way of standardizing what that meaning is across the 
programming industry. 
 VBA is implemented to interact with a host application—for example, Microsoft Access, Visual Basic, 
Microsoft Excel, and Microsoft Project. In contrast to previous versions of these conventions, the RVBA 
conventions cover all implementations of the VBA language, regardless of the host application. Note that 
some of the tags described in this article may not necessarily have an implementation within some 
particular host program. The word object, in the context of this document, refers to simple variables, as 
well as to objects presented in the interface of the VBA host program. 
 While I’m the editor of these conventions and in 1992 proposed the original conventions for Microsoft 
Access, they are the work of many people, including Charles Simonyi, who invented the Hungarian 
conventions on which these are based; Stan Leszynski, who co-authored several versions of the 
conventions; and Paul Litwin, for his contributions and for getting the conventions in front of the public. 
Many others, too numerous to mention, have also contributed to the development of these conventions. 
 These conventions are intended as a guideline. If you disagree with a particular part, simply replace 
that part with what you think works better. However, keep in mind who will see those changes and place a 
comment in the header of a module indicating what changes have been made. The conventions are 
presented without rationalizations for how they were derived; you may assume that there are good reasons 
for the choices that have been made. Send me any questions or comments about the conventions (see the 
addresses at the end of the article). Suggestions for future versions are welcome. 
 

Changes to the conventions 
These conventions first appeared in print in the charter issue of Smart Access in February of 1993. A 
significantly revised version appeared in the August 1993 issue. 
 Some of the tags in the version of the conventions presented here have changed from previous 
versions. Consider all previous tags to be grandfathered into the conventions—you don’t need to go back 
and make changes. For new development work, we leave it up to you to decide whether to use the older 
tags or the ones suggested here. 
 

An introduction to Hungarian 
The RVBA conventions are based on the Hungarian style, named for the native country of Charles 
Simonyi,the inventor of this style of naming objects. The objective of Hungarian is to convey information 
about the object concisely and efficiently. Hungarian takes some getting used to, but once adopted, it 
quickly becomes second nature. The format of a Hungarian object name is as follows: 
 
[prefixes]tag[BaseName[Suffixes]] 
The square brackets indicate optional parts of the object name. These components have the following 
meanings: 

 



Copyright  1995 Greg Reddick.   You may freely distribute this document. 

• Prefixes—Modify the tag to indicate additional information. Prefixes are in all lowercase letters. They 
are usually picked from a standardized list of prefixes, given later in this article. 

• Tag—Short set of characters, usually mnemonic, that indicates the type of the object. The tag is in all 
lowercase letters. It’s usually selected from a standardized list of tags, given later in this article. 

• BaseName—One or more words that indicate what the object represents. The first letter of each word 
in the base name is capitalized. 

• Suffixes—Additional information about the meaning of the BaseName. The first letter of each word in 
the Suffix is capitalized. They are usually picked from a standardized list of suffixes, given later in this 
article 

 
Notice that the only required part of the object name is the tag. This may seem counterintuitive; you may 
feel that the base name is the most important part of the object name. However, consider a generic 
procedure that operates on any form. The fact that the routine operates on a form is the important thing, not 
what that form represents. Because the routine may operate on forms of many different types, you don’t 
necessarily need a base name. However, if you have more than one object of a type referenced in the 
routine, you must have a base name on all but one of the object names to differentiate them. Also, unless 
the routine is generic, the base name conveys information about the variable. In most cases a variable 
should include a base name. 
 

Tags 
You use tags to indicate the datatype of an object, and you construct them using the techniques described in 
the following sections. 
 

Variable tags 
Use the tags listed in Table 1 for VBA datatypes. You can also use a specific tag instead of “obj” for any 
datatype defined by the host application or one of its objects. (See the section “Host Application and 
Component Extensions to the Conventions” later in this article.) 
 

Table 1. Tags for VBA variables. 

Tag Object Type 
byt Byte 
f Boolean 
int Integer 
lng Long 
sng Single 
dbl Double 
cur Currency 
dat Date 
obj Object 
str String 
stf String (fixed length) 
var Variant 
 
Here are several examples: 
 
lngCount 
intValue 
strInput 
 
You should explicitly declare all variables, each on a line by itself. Don’t use the old type declaration 
characters, such as %, &, and $. They are extraneous if you use the naming conventions, and there’s no 
character for some of the datatypes, such as Boolean. You should explicitly declare all variables of type 
Variant, the default, as type Variant. For example: 



Copyright  1995 Greg Reddick.   You may freely distribute this document. 

 
Dim intTotal As Integer 
Dim varField As Variant 
Dim strName As String 
 

Constant tags 
You should indicate generic constants by using the tag “con.” If you need to differentiate one class of 
constants from another, you can invent a class name, such as glr (for Getz, Litwin, and Reddick), and 
append the letter “c” to the class—for example, glrcPi. You may want to do this if you have some specific 
component that has global constants and you want to ensure they don’t conflict with other constants. For 
example: 
 
conPi 
glrcError205 
 

Tags for user-defined types and classes 
User-defined types and user-created class objects are treated the same because user-defined types are really 
a kind of simple user-defined class. These objects have two components: the class name that defines the 
structure of the class and a tag that is used for instances of that class. Choose an appropriate name for the 
class. For example, if you had a user-defined class that described a glyph bitmap created at runtime on a 
form, the class name would be glyph. The tag would be an abbreviation of glyph—perhaps gph. If you had 
another class that was a collection of these objects, it would use glyphs and gphs, respectively. Some host 
applications, such as Access, don’t support class modules yet; however, you can also treat a form as a user-
defined class with a user interface. For example: 
 
gphGlyph 
nclName 
 

Collection tags 
You treat a collection object with a special tag. You construct the tag using the datatype of the collection 
followed by the letter “s.” For example, if you had a collection of Longs, the tag would be lngs. If it were a 
collection of user-defined types with the tag gph, the collection would be gphs. Although, in theory, a 
collection can hold objects of different data types, in practice, each of the data types in the collection is the 
same. If you do want to use different data types in a collection, use the tag objs. For example: 
 
intsEntries 
erhsHandler 
bscsBaseClass 
 

Constructing procedures 
VBA procedures require you to name various objects: procedure names, labels, and parameters. These 
objects are described in the following sections. 
 

Constructing procedure names 
VBA names event procedures, and you can’t change them. You should use the capitalization defined by the 
system. For user-defined procedure names, capitalize the first letter of each word in the name. For example: 
 
cmdOK_Click 
GetTitleBarString 
PerformInitialization 
 
 Procedures should always have a scope keyword, Public or Private, when they are declared. For 
example: 
 



Copyright  1995 Greg Reddick.   You may freely distribute this document. 

Public Function GetTitleBarString() As String 
Private Sub PerformInitialization 
 

Naming parameters 
You should prefix all parameters in a procedure call with ByVal or ByRef, even though ByRef is optional 
and redundant. Procedure arguments are named the same as simple variables of the same type, except that 
arguments passed by reference use the prefix “r”. For example: 
 
Sub TestValue(ByVal intInput As Integer, _ 
 ByRef rlngOutput As Long) 
Function GetReturnValue(ByVal strKey As String, _ 
 ByRef rgph As Glyph) As Boolean 
 

Prefixes 
Prefixes modify an object tag to indicate more information about an object. 
 

Arrays of objects prefix 
Arrays of an object type use the prefix “a”. For example: 
 
aintFontSizes 
astrNames 
 

Index prefix 
You indicate an index into an array by the prefix “i,” regardless of the datatype of the index. You may also 
use the index prefix to index into other enumerated objects, such as a collection of user-defined classes. For 
example: 
 
iaintFontSizes 
iastrNames 
igphsGlyphCollection 
 

Prefixes for scope and lifetime 
Three levels of scope exist for each variable in VBA: Public, Private, and Local. A variable also has a 
lifetime of the current procedure or the length of the program. Use the prefixes in Table 2 to indicate scope 
and lifetime. 

 

Table 2. Prefixes for scope and lifetime. 

Prefix Object Type 
(none) Local variable, procedure-level lifetime 
s Local variable, program-level lifetime (static variable) 
m Private (module) variable, program-level lifetime 
g Public (global) variable, program-level lifetime 
 
You also use the “m”" and “g” constants with other objects, such as constants, to indicate their scope. For 
example: 
 
intLocalVariable 
mintPrivateVariable 
gintPublicVariable 
mconPi 
 



Copyright  1995 Greg Reddick.   You may freely distribute this document. 

Other prefixes 
Table 3 lists and describes some other prefixes. 

 

Table 3. Other commonly-used prefixes. 

Prefix Object Type 
c Count of some object type 
h Handle to a Windows object 
r Parameter passed by reference 
 
Here are several examples: 
 
cstrArray 
hwndForm 
 

Suffixes 
Suffixes modify the base name of an object, indicating additional information about a variable. You’ll 
likely create your own suffixes that are specific to your development work. Table 4 lists some generic 
VBA suffixes. 

 

Table 4. Commonly used suffixes. 

Suffix Object Type 
Min The absolute first element in an array or other kind of list. 
First The first element to be used in an array or list during the current operation. 
Last The last element to be used in an array or list during the current operation. 
Lim The upper limit of elements to be used in an array or list. Lim isn’t a valid index. 

Generally, Lim equals Last + 1. 
Max The absolutely last element in an array or other kind of list. 
Cnt Used with database elements to indicate that the item is a Counter. Counter 

fields are incremented by the system and are numbers of either type Long or 
type ReplicationId. 

 
Here are some examples: 
 
iastrNamesMin 
iastrNamesMax 
iaintFontSizesFirst 
igphsGlyphCollectionLast 
lngCustomerIdCnt 
varOrderIdCnt 
 

Host application and component extensions to the conventions 
Each host application for VBA, as well as each component that can be installed, has a set of objects it can 
use. This section defines tags for the objects in the various host applications and components. Future 
versions of the conventions will include tags for other VBA hosts and components. 
 

Access 95, version 7.0 objects 
Table 5 lists Access object variable tags. Besides being used in code to refer to these object types, these 
same tags are used to name these kinds of objects in the form and report designers. 

 

Table 5. Access object variable tags. 



Copyright  1995 Greg Reddick.   You may freely distribute this document. 

Tag Object Type 
app Application 
chk CheckBox 
cbo ComboBox 
cmd CommandButton 
ctl Control 
ctls Controls 
ocx CustomControl 
dcm DoCmd 
frm Form 
frms Forms 
grl GroupLevel 
img Image 
lbl Label 
lin Line 
lst ListBox 
bas Module 
ole ObjectFrame 
opt OptionButton 
fra OptionGroup (frame) 
brk PageBreak 
pal PaletteButton 
prps Properties 
shp Rectangle 
rpt Report 
rpts Reports 
scr Screen 
sec Section 
sfr SubForm 
srp SubReport 
txt TextBox 
tgl ToggleButton 
 
Here are some examples: 
 
txtName 
lblInput 
 
 For OLE custom controls, you can use the tag OCX as specified in Table 5 or more specific object 
tags that are listed later in this article in Tables 11 and 12. 
 

DAO 3.0 objects 
DAO is the programmatic interface to the Jet database engine shared by Access, VB, and VC++. The tags 
for DAO 3.0 objects are shown in Table 6. 

 

Table 6. DAO 3.0 object tags. 

Tag Object Type 
cnt Container 
cnts Containers 
db Database 
dbs Databases 
dbe DBEngine 



Copyright  1995 Greg Reddick.   You may freely distribute this document. 

doc Document 
docs Documents 
err Error 
errs Errors 
fld Field 
flds Fields 
grp Group 
grps Groups 
idx Index 
idxs Indexes 
prm Parameter 
prms Parameters 
pdbe PrivDBEngine 
prp Property 
prps Properties 
qry (or qdf) QueryDef 
qrys (or qdfs) QueryDefs 
rst Recordset 
rsts Recordsets 
rel Relation 
rels Relations 
tbl (or tdf) TableDef 
tbls (or tdfs) TableDefs 
usr User 
usrs Users 
wrk Workspace 
wrks Workspaces 
 
Here are some examples: 
 
rstCustomers 
idxPrimaryKey 
 
Table 7 lists the tags used to identify types of objects in a database. 

 

Table 7. Access Database Explorer object tags. 

Tag Object Type 
tbl Table 
qry Query 
frm Form 
rpt Report 
mcr Macro 
bas Module 
 
If you wish, you can use more exact tags or suffixes to identify the purpose and type of a database object. If 
you use the suffix, use the tag given from Table 7 to indicate the type. Use either the tag or the suffix found 
along with the more general tag, but not both. The tags and suffixes are shown in Table 8. 

 

Table 8. Specific object tags and suffixes for Access Database Explorer objects. 

Tag Suffix Object Type 
tlkp Lookup Table (lookup) 



Copyright  1995 Greg Reddick.   You may freely distribute this document. 

qsel (none) Query (select) 
qapp Append Query (append) 
qxtb XTab Query (crosstab) 
qddl DDL Query (DDL) 
qdel Delete Query (delete) 
qflt Filter Query (filter) 
qlkp Lookup Query (lookup) 
qmak MakeTable Query (make table) 
qspt PassThru Query (SQL pass-through) 
qtot Totals Query (totals) 
quni Union Query (union) 
qupd Update Query (update) 
fdlg Dlg Form (dialog) 
fmnu Mnu Form (menu) 
fmsg Msg Form (message) 
fsfr SubForm Form (subform) 
rsrp SubReport Form (subreport) 
mmnu Mnu Macro (menu) 
 
Here are some examples: 
 
tblValidNamesLookup 
tlkpValidNames 
fmsgError 
mmnuFileMnu 
 
When naming objects in a database, don’t use spaces. Instead, capitalize the first letter of each word. For 
example, instead of Quarterly Sales Values Table, use tblQuarterlySalesValues. 
 There is strong debate over whether fields in a table should have tags. Whether you use them is up to 
you. However, if you do use them, use the tags from Table 9. 
 

Table 9. Field tags (if you decide to use them). 

Tag Object Type 
bin Binary 
byt Byte 
guid Globally unique identified (GUID) used for 

replication AutoIncrement fields 
lng Autoincrementing (either sequential or random) 

Long (used with the suffix Cnt) 
cur Currency 
dat Date/time 
dbl Double 
int Integer 
lng Long 
mem Memo 
ole OLE 
sng Single 
str Text 
f Yes/No 

 
Visual Basic 4.0 objects 
Table 10 shows the tags for suggested Visual Basic 4.0 objects. 



Copyright  1995 Greg Reddick.   You may freely distribute this document. 

 

Table 10. Visual Basic 4.0 object tags. 

Tag Object Type 
app App 
chk CheckBox 
clp Clipboard 
cbo ComboBox 
cmd CommandButton 
ctl Control 
dat Data 
dir DirListBox 
drv DriveListBox 
fil FileListBox 
frm Form 
fra Frame 
hsb HScrollBar 
img Image 
lbl Label 
lin Line 
lst ListBox 
mdi MDIForm 
mnu Menu 
ole OLE 
opt OptionButton 
pic PictureBox 
prt Printer 
scr Screen 
shp Shape 
txt TextBox 
tmr Timer 
vsb VScrollBar 

 
Microsoft common control objects 
Windows 95 and Windows NT have a set of common controls that are accessible from VBA. Table 11 lists 
the tags for objects created using these controls. 

 

Table 11. Microsoft common control object tags. 

Tag Object Type 
btn Button (Toolbar) 
btns Buttons (Toolbar) 
hdr ColumnHeader (ListView) 
hdrs ColumnHeaders (ListView) 
iml ImageList (ImageList) 
lit ListItem (ListView) 
lits ListItems (ListView) 
lvw ListView (ListView) 
nod Node (TreeView) 
nods Nodes (TreeView) 
pnl Panel (Status Bar) 
pnls Panels (Status Bar) 



Copyright  1995 Greg Reddick.   You may freely distribute this document. 

prb ProgressBar (Progress Bar) 
sld Slider (Slider) 
sbr StatusBar (Status Bar) 
tab Tab (Tab Strip) 
tabs Tabs (Tab Strip) 
tbs TabStrip (Tab Strip) 
tbr Toolbar (Toolbar) 
tvw TreeView (TreeView) 

 
Other OLE custom controls and objects 
Finally, Table 12 lists the tags for other commonly used OLE custom controls and objects. 
 

Table 12. Tags for commonly-used OLE custom controls. 

Tag Object Type 
ani AniPushButton (Animated Push Button) 
cdl CommonDialog (Common Dialog) 
dbc DBCombo (Data Bound Combo Box) 
dbg DBGrid (Data Bound Grid) 
dls DBList (Data Bound List Box) 
gau Gauge (Gauge) 
gph Graph (Graph) 
grd Grid (Grid) 
key MhState (Key State) 
mmc MMControl (Multimedia Control) 
com MSComm (Communication Port) 
msg MAPIMessages (Messaging API Message Control) 
msk MaskEdBox (Masked Edit Textbox) 
out Outline (Outline Control) 
pcl PictureClip (Picture Clip Control) 
rtf RichTextBox (Rich Textbox) 
ses MAPISession (Messaging API Session Control) 
spn SpinButton (Spin Button) 

 
Summary 
Using a naming convention requires a considerable initial effort on your part. It also requires that you 
conform to rules specified by other parties, which is difficult for many programmers. The payoff comes 
when either you or another programmer has to revisit your code at a later time. Using the conventions 
makes your code more readable and maintainable. 
 

Greg Reddick is the President of Gregory Reddick & Associates, a consulting company 

specializing in software development in Microsoft Access, VB, and C/C++. He worked 

for four years on the Access development team at Microsoft. He's a coauthor of the 

Microsoft Access 95 Developer's Handbook, published by Sybex. He can be reached at 
71501,2564 on CompuServe or 71501.2564@compuserve.com from the Internet. 
 

 


